# Basic Time Study



AICE PROGRAM – MALAYSIA AUTOMOTIVE INSTITUTE

# **Topics Outline**

- Overview of standardized work
- Introduction to standardized work
- Objective of standardized work
- Elements of standardized work
  - Takt time
  - Cycle time
  - Standard time
- Time Study on Continuous Observation





**Overview of Standardized Work** 

Standardized work is the <u>foundation</u> for consistent and stable quality.

This consistency and stability is the first step towards Continuous Improvement (Kaizen)







#### **Essence of Quality**

Why Standardized Work ?

- ....to maintain the safety at work place.
- ....to guarantees quality for the customer.
- ....to achieve better production performance.

....to create efficient production sequence with less waste



The system which can be easily understood

... the most efficient combination of person, machine, and material.

## **Case : Rusty Wallace's NASCAR Racing Team**

- NASCAR racing became very popular in the 1990s with huge sponsorship and prize money
- High performance pit crews are a key element of a successful race team
- Pit crew members can earn \$100,000 per year for changing tires!
- Each position has very specific work standards
- Pit crews are highly organized and go though rigorous physical training
- Pit stops are videotaped to look for improvements





**Objective of Standardized Work** 

Performing standardized work allow clear and visible 'standard' operation. Deviation from standardized work indicates an abnormality, which is then an opportunity for improvement.

The system enable everyone to find problems.

Standardized Work vs. Work Standards???



## Reduce variation in the process



People using standardized processes and get defined result



**Standardized Sustain Result** 

## **Elements of Standardized Work**

Takt Time

Work Sequence

Standardized Work in Process (SWIP)

Elements of Standardized Work

## Takt Time

Definition

- From the German word Taktzeit (clock cycle), takt refers to the measure, meter or beat of movement.
- For the Lean enterprise, takt time is the pace at which items need to be produced in order to satisfy customer demand. It is the heartbeat of the market and the drumbeat of production.



# Takt Time vs Cycle Time

| Takt Time                                                                                                  | Cycle Time                                                                    |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| The heartbeat of the process and the voice of the customer                                                 | The voice of the process                                                      |
| The time interval at which a<br>finished product MUST come<br>off the line to meet the<br>customer's needs | The time between two<br>consecutive parts produced in<br>a particular process |

#### Remark:

- Takt time (TT) and Cycle time (CT) are NOT the same.
   ✓ TT is driven by the customer; CT by the process.
- CT is not the same as Processing Time.
   For example, we might have multiple parts processed simultaneously

   e.g. painting process : Each enters and exits the process every "x" seconds while the Processing Time for each part is longer.

## Takt Time

### Example 1:



## Takt Time

Example 2:

- Work Unit 3000 (Two shift operation)
- Customer demand = 1504 / per day
- Available work time = 16 hours = 960 min/day
- Less 4 breaks per day @ 10 min. each = 40 min
- Total Available Time = 920 min

## Solution

- ✓ 920 minutes X 60 seconds = 55,200 seconds
- ✓ Takt Time = 55,200sec / 1504 units = 36.7 seconds
- ✓ We need to net 1 unit every 36.7 seconds

## **Time Studies**

- Involves timing a sample of a worker's performance and using it to set a standard
- Requires trained and experienced observers
- Cannot be set before the work is performed

Questions

What if CT is greater than TT... is this an issue? What if CT is less than TT?

## **Time Studies**

- 1. Define the task to be studied
- 2. Divide the task into precise elements
- 3. Decide how many times to measure the task
- 4. Time and record element times and rating of performance
- 5. Compute average observed time

## **Time Studies**

6. Determine performance rating and normal time

Normal time = 
$$\begin{pmatrix} Average \\ observed \\ time \end{pmatrix} \times \begin{pmatrix} Performance \\ rating factor \end{pmatrix}$$

- 7. Add the normal times for each element to develop the total normal time for the task
- 8. Compute the standard time

- Personal time allowance
  - 4% 7% of total time for use of restroom, water fountain, etc.
- Delay allowance
  - Based upon actual delays that occur
- Fatigue allowance
  - Based on our knowledge of human energy expenditure

| 1. | Cons  | stant allowance                                             |   |
|----|-------|-------------------------------------------------------------|---|
|    | (A)   | Personal allowance                                          | 5 |
|    | (B)   | Basic fatigue allowance                                     | 4 |
| 2. | Varia | able allowances:                                            |   |
|    | (A)   | Standing allowance                                          | 2 |
|    | (B)   | Abnormal position                                           |   |
|    |       | (i) Awkward (bending)                                       | 2 |
|    |       | <ul><li>(ii) Very awkward (lying,<br/>stretching)</li></ul> | 7 |

(C) Use of force or muscular energy in lifting, pulling, pushing Weight lifted (pounds)

| 20 | 3  |
|----|----|
| 40 | 9  |
| 60 | 17 |

## (D) Bad light:

- (i) Well below recommended.... 2 5
- (ii) Quite inadequate.....

| (E) | Atmospheric conditions (heat and humidity)     | 0-10 |
|-----|------------------------------------------------|------|
| (F) | Close attention:                               |      |
|     | (i) Fine or exacting                           | 2    |
|     | (ii) Very fine or very exacting                | 5    |
| (G) | Noise level:                                   |      |
|     | (i) Intermittent—loud                          | 2    |
|     | (ii) Intermittent—very loud<br>or high-pitched | 5    |

| (H) | Mental strain:                           |   |
|-----|------------------------------------------|---|
|     | (i) Complex or wide span<br>of attention | 4 |
|     | (ii) Very complex                        | 8 |
| (I) | Tediousness:                             |   |
|     | (i) Tedious                              | 2 |
|     | (ii) Very tedious                        | 5 |

Time Study Example 1

Average observed time = 4.0 minutes Worker rating = 85% Allowance factor = 13%

Normal time = (Average observed time) x (Rating factor) = (4.0)(.85) = 3.4 minutes

Standard time = 
$$\frac{\text{Normal time}}{1 - \text{Allowance factor}} = \frac{3.4}{1 - .13} = \frac{3.4}{.87}$$
  
= 3.9 minutes

## Time Study Example 2

#### Allowance factor = 15%

|            |                                           | Cycle | e Obs | Performance |     |    |        |
|------------|-------------------------------------------|-------|-------|-------------|-----|----|--------|
|            | Job Element                               | 1     | 2     | 3           | 4   | 5  | Rating |
| (A)        | Compose and type letter                   | 8     | 10    | 9           | 21* | 11 | 120%   |
| <b>(B)</b> | Type envelope address                     | 2     | 3     | 2           | 1   | 3  | 105%   |
| (C)        | Stuff, stamp, seal, and<br>sort envelopes | 2     | 1     | 5*          | 2   | 1  | 110%   |

- 1. Delete unusual or nonrecurring observations (marked with \*)
- 2. Compute average times for each element

Average time for A = (8 + 10 + 9 + 11)/4 = 9.5 minutes Average time for B = (2 + 3 + 2 + 1 + 3)/5 = 2.2 minutes Average time for C = (2 + 1 + 2 + 1)/4 = 1.5 minutes 3. Compute the normal time for each element

Normal time = (Average observed time) x (Rating)

Normal time for A = (9.5)(1.2) = 11.4 minutes Normal time for B = (2.2)(1.05) = 2.31 minutes Normal time for C = (1.5)(1.10) = 1.65 minutes

4. Add the normal times to find the total normal time

Total normal time = 11.40 + 2.31 + 1.65 = 15.36 minutes

5. Compute the standard time for the job

Standard time =  $\frac{\text{Total normal time}}{1 - \text{Allowance factor}}$ =  $\frac{15.36}{1 - 0.15}$  = 18.07 minutes



The data in the following table represent time-study observations on a new operation with three work elements. On the basis of these observations, find the standard time for the process. Assume a 15% allowance factor.

|         | Performance | Observations (times in seconds) |       |       |       |  |  |  |  |
|---------|-------------|---------------------------------|-------|-------|-------|--|--|--|--|
| Element | Rating      | 1                               | 2     | 3     | 4     |  |  |  |  |
| 1       | 120%        | 90.3                            | 91.5  | 92.4  | 90.2  |  |  |  |  |
| 2       | 100%        | 30.5                            | 32.3  | 29.6  | 31.1  |  |  |  |  |
| 3       | 105%        | 130.5                           | 128.9 | 132.0 | 130.5 |  |  |  |  |

# **Time Study**

#### Example of Process Study Sheet (作業分析の例)

| Process    | Study                                      | Process<br>Final A:                                 | :<br>ssembly #7              |                | Pro   | D duc | ct:<br>V-02  | 203   | 32    |        | 0     | bse           | rver<br>Be | :<br>enny     | Date/Time<br>April 18, | :<br>2007 14:00    | Page     |
|------------|--------------------------------------------|-----------------------------------------------------|------------------------------|----------------|-------|-------|--------------|-------|-------|--------|-------|---------------|------------|---------------|------------------------|--------------------|----------|
| Process    |                                            |                                                     |                              |                | OF    | PER   | ATO          | R     |       |        |       |               |            | 1             | MACHINE                | 9.019              |          |
| Steps      | Work B                                     | Element                                             |                              | _              |       | (     | Obs          | erve  | ed T  | ime    | S     |               |            | Depostable    | Cycle Time             | Notor              |          |
| Assembly 1 | sembly 1 Get base & put into fixture 4 5 6 |                                                     | 3                            | 4              | 6     | 4     | 8            | 9     | 4     | 4      |       | Base far away |            |               |                        |                    |          |
|            | Get pin & put into fixture                 |                                                     |                              | 6              | 8     | 10    | 15           | 9     | 10    | 10     | 7     | 11            | 10         | 10            |                        | Fixture unstab     | le       |
|            | Put fixture into machine                   |                                                     |                              | 2              | 2     | 1     | 2            | 2     | 3     | 2      |       |               |            | 2             |                        |                    |          |
|            | Machine cycle                              |                                                     |                              | 1              | 1     | 1     |              |       |       |        |       |               |            | 1             | 6                      | Operator waiti     | ng       |
|            | Remove                                     | ve                                                  |                              |                | 2     | 2     | 1            | 2     | 2     |        |       |               |            | 2             |                        |                    |          |
|            | Check a                                    | appearance                                          | earance & place 8            |                |       |       | 20           | 7     | 8     | 9      | 9     | 9             | 8          | 8             |                        | Checking unst      | able     |
|            | Subtotal 27                                |                                                     |                              |                |       |       |              |       |       |        |       |               |            |               |                        |                    |          |
| Assembly 2 | Get low                                    | er case                                             | Timing T                     | ips            | -     | -     | -            | -     | -     |        |       |               | 3          |               | 100                    |                    |          |
|            | Get wor                                    | Get work piece • Collect real times at the process. |                              |                |       |       |              |       |       |        |       |               |            |               |                        |                    |          |
|            | Put into                                   | lower cas                                           | <ul> <li>Position</li> </ul> | ı you          | urse  | If so | you          | ı ca  | n se  | e th   | e op  | oera          | tor's      | s hand motion | ns.                    | Insertion unstable |          |
|            | Get upp                                    | er case &                                           | • Time ea                    | ich v          | vork  | ele   | men          | t se  | para  | ately  | lom   | ont           |            |               |                        |                    |          |
|            | Put into                                   | forming m                                           | • Observe                    | e an           | ope   | rato  | or wh        | no is | qua   | alifie | ed to | p pe          | rfor       | n the job.    |                        | Machine gate i     | far away |
|            |                                            |                                                     | <ul> <li>Always</li> </ul>   | sepa           | arate | e op  | erat         | or ti | ime   | and    | ma    | chin          | e tir      | ne.           |                        |                    |          |
|            |                                            |                                                     | Select t     Remem           | he lo<br>ber : | shop  | st re | peat<br>or c | tabl  | e tin | ne fo  | ore   | ach           | elen       | nent.         |                        |                    |          |

# **Time Study Analysis**

## **Time Analysis Classification**



#### Taking Elemental Operation : Time Analysis Procedure.

#### 1. Observation frequency.

- Between 10 ~ 20 times data sampling.
- If fluctuation of material, part dimension or time value are big, increase observation frequency

#### 2. Observation position & posture.

- Observer's position should provide a good view of operation.
- Observer's position must not interrupt associate movement.
- The observer posture should be in such way that the associate, stop watch & observer's eye were align.
- 3. During observation, give a full attention to operator movement.

#### 4. Abnormal operation.

- Part dropping, equipment faulty (short m/c down & etc), NG occurrence, repair, talking & etc should be consider abnormal. Circle the entered time data with explanatory notes.
- 5. Determine dividing line for elemental operation.
  - It's more helpful to utilize signals such as light, buzzer & etc.
- 6. Exclude intermission time & synchronizing m/c time.
  - If waiting knowing in advance, write down in elemental operation work column
- 7. Interval operation time such as container replacement, quality check, should be entered for every operation.

#### Taking Continuous Observation : Time Analysis Procedure.

- 1. Study current operation earlier.
- 2. Fill up Operation Analysis Chart.
- 3. Make enough copies of the chart.
- 4. Start analysis & make sure :
  - a. Observation position & posture.
    - Stand in a position where overall operation can be seen well. (move if required)
    - Stand in a position that didn't disturb associate operation.
  - b. While observation, give a full attention to the operation.
  - c. Divide the operation into unit operation which is one level higher than elemental operation.



## **Time Study : Exercise**

Watch writing characters on the whiteboard operation and perform time analysis.

#### **Points**

- 1) Watch carefully the operation content and memorize it.
- 2) Divide motions (sort into element operations)
- 3) Enter the element operations in the analysis sheet.
- 4) Measure time with stopwatch, keeping the dividing point of motion in mind.
- 5) Start observation after you get used to operation.

# **Time Study Through VTR : Exercise**

| (Ex)<br>Timing<br>when | Motion                        | Observation Point                                        | Element<br>Operati<br>on |
|------------------------|-------------------------------|----------------------------------------------------------|--------------------------|
| pressing <b>b</b> T    | Stand up from the chair       | The moment you stand up                                  |                          |
| stopwatc               | Walk                          | The moment you stood up                                  |                          |
| h button               | Take a njece of marker        | The moment you reached the board                         |                          |
| +                      | Write characters on the hoard | The moment you took a piece of chalk                     |                          |
| +                      | Put on the markers can        | The moment you finished writing characters on the board. |                          |
| ▶+                     |                               | The moment you replaced chalk.                           |                          |
| +                      | Cit on the chair              | The moment you returned to the chair.                    |                          |
| ▶                      | Rest                          | The moment you sat down.                                 |                          |
|                        |                               |                                                          |                          |

# **Preparation to Make Time Study**

It's the best condition if we can take all part number time study. But due to some model are slow moving, it's very difficult for us to take all of it. At this stage, we used PQ Analysis Chart to determine which part number are more priority.

|     |                 |         |                  |                             | Appr     | oved   | Checked         | Wri | tten               |
|-----|-----------------|---------|------------------|-----------------------------|----------|--------|-----------------|-----|--------------------|
| Pr  | oduction Quant  | ity An  | alysis C         | Chart                       |          |        |                 |     |                    |
|     | [ PQ Chart ]    |         |                  | Departme                    | nt : LEG | O Manu | facturing       |     |                    |
|     | Month :         |         |                  | Line name                   | : HVAC   |        |                 |     |                    |
|     | Working Day :   |         |                  | Date :                      |          |        |                 |     |                    |
| No. | Part no.        | Product | Monthly<br>units | Needed*<br>units per<br>day |          | Neede  | d units per day |     | Accumul<br>ation % |
| 1   | MA446850-962DOR | D73A    | 5921             |                             |          |        |                 |     |                    |
| 2   | MA446850-972DOR | D74A    | 4646             |                             |          |        |                 |     |                    |
| з   | MA446850-982DOR | D75A    | 4123             |                             |          |        |                 |     |                    |
| 4   | MA446850-992DOR | D76A    | 3465             |                             |          |        |                 |     |                    |
| 5   | MA446850-0310OT | Myvi    | 3006             |                             |          |        |                 |     |                    |
| 6   | MA446850-0310OT | Myvi    | 2122             |                             |          |        |                 |     |                    |
| 7   | MA446850-0210OT | Alza    | 1784             |                             |          |        |                 |     |                    |
| 8   | MA446850-0220OT | Alza    | 1234             |                             |          |        |                 |     |                    |
| 9   | MA446850-0131OT | Vios    | 947              |                             |          |        |                 |     |                    |
| 10  | MA446850-0141OT | Vios    | 756              |                             |          |        |                 |     |                    |
| 11  | MA446850-0441OT | Camry   | 648              |                             |          |        |                 |     |                    |
| 12  | MA446850-0451OT | Camry   | 541              |                             |          |        |                 |     |                    |
| 13  | MA446850-6580OP | Exora   | 446              |                             |          |        |                 |     |                    |
| 14  | MA446850-6570OP | Exora   | 312              |                             |          |        |                 |     |                    |
| 15  | MA446850-5580OP | BLM     | 254              |                             |          |        |                 |     |                    |
| 16  | MA446850-5570OP | BLM     | 212              |                             |          |        |                 |     |                    |
| 17  | MA446850-5580OP | Waja    | 178              |                             |          |        |                 |     |                    |
| 18  | MA446850-5590OP | Waja    | 136              |                             |          |        |                 |     |                    |
| 19  |                 |         |                  |                             |          |        |                 |     |                    |
|     | Total           |         |                  |                             |          |        |                 |     |                    |

- 1 Fill in the column of Month , Working day, Department , Line Name and Date.
- 2 Sum all the monthly quantity
- 3 Convert to daily quantity (Monthly / working day)
- 4 Draw the horizontal bar graft base daily quantity
- 5 Calculate the percentage accumulation

Each model / total x 100% add to previous value)

|                    | Line/Cell Name<br>Final Ass | embly #7              | Team Leader<br>Benn       | r:<br>y Li                      | Dats:<br>April 07 |          |  |
|--------------------|-----------------------------|-----------------------|---------------------------|---------------------------------|-------------------|----------|--|
|                    | Quantity Requi              | red:<br>Op            | Takt Time:<br>40 S        | shin: A<br>Next of Descator: 16 |                   |          |  |
| Remember<br>breaks | Time                        | Hourly<br>Plan Actual | Cumulative<br>Plan Actual | Problem                         | Causes            | Sign-off |  |
|                    | 00:00-07:00                 | 90/90                 | 90/90                     |                                 |                   | Sharon   |  |
|                    | 07:00~08:00                 | 90/88                 | 180 / 178                 | Textor Mite<br>Stoppage         | 97                | Sharon   |  |
|                    | 08:00~09:00                 | 90/90                 | 270/268                   |                                 |                   | Sharon   |  |
|                    | 09:10-10:10                 | 90/85                 | 360 / 353                 | Defects<br>(Appearor            | 06)               | Sharun   |  |
|                    | 10:10-11:10                 | 90/90                 | 450 / 443                 |                                 |                   | Roy      |  |
|                    | 11:4012:40                  | 90/90                 | 540 / 533                 |                                 |                   | Sharon   |  |
|                    | 12:40~13:40                 | 90/86                 | 630/619                   | Deficite (B                     | led Pierts?       | Sharon   |  |
|                    | 13:50~14:30                 | 60/60                 | 690/679                   |                                 |                   | Sharon   |  |
|                    | 0.7.                        | 11/11                 | 690 / 690                 |                                 |                   | Roy      |  |

Just keeping visibility is not our real objective. Problems must be linked to corrective action!

Area Manager signs at lunch and end of shift

## Example of Process Capacity Sheet (工程別能力表の例)

| Process |                | Approved by: |            | Part #   | 25-590        | 01                                               | Applica<br>JN-01 | tion   | Entered by: D:<br>Wayne Xi M |    | e<br>08, 2007 |
|---------|----------------|--------------|------------|----------|---------------|--------------------------------------------------|------------------|--------|------------------------------|----|---------------|
| Ca      | pacity<br>heet | R. Q         | luan       | Part nan | ne<br>Base Ur | e Unit I Number of parts Line<br>Machine Shop #2 |                  |        |                              |    |               |
| Stan    | Stor           | nama         | Machina it |          | BASIC T       | IME                                              | TOOL C           | HANGE  | PROCESSING                   |    | Remarks       |
| otep    | atep name      |              | macrime #  | MANUAL   | AUTO          | COMPLETION                                       | CHANGE           | TIME   | CAPACITY/SHI                 | FT |               |
| 1       | Cut            |              | C100       | 6        | 32            | 38                                               | 500              | 2 min. | 720 p                        |    |               |
| 2       | Rough          | Orind        | 0R100      | 7        | 12            | 19                                               | 1,000            | 5 min. | 1,440 p                      |    |               |
| 3       | Fine Gr        | ind          | GR200      | 7        | 30            | 37                                               | 200              | 5 min. | 724 p                        |    |               |
| 4       | Measure        | ) Diameter   | TS 100     | 8        | 4             | 12                                               | -                | -      | 2,325 p                      |    |               |
|         |                |              | Total      | 28       |               |                                                  |                  |        |                              |    |               |

## **Production Quantity Analysis Chart**



## **Production Quantity Analysis Chart**

|                     | Product | Monthly | Needed* | Needed units per day A |     |                                         |  |   |  |  |     |   |                  |    |          |          |                      | Accumu          |    |                |    |    |  |          |                      |
|---------------------|---------|---------|---------|------------------------|-----|-----------------------------------------|--|---|--|--|-----|---|------------------|----|----------|----------|----------------------|-----------------|----|----------------|----|----|--|----------|----------------------|
| Part No.            | type    | units   | units   |                        |     |                                         |  |   |  |  | p g | 0 | 00               | 0  | <b>0</b> | 00       | 00                   | 00              | 0  | <del>1</del> 0 | 30 | õ  |  | lation % |                      |
| MA282500-<br>10706N | 70F     | 7,400   | 352     |                        | N 4 | . g                                     |  | • |  |  |     |   | <del>,</del> 200 | 50 | 5        | <u>7</u> | 5                    | 30              | 32 | 37             | 36 | 38 |  | 33.34    |                      |
| MA162500-<br>3260   | 70F     | 5,160   | 246     |                        |     |                                         |  |   |  |  |     |   | <u> </u>         | ◀  |          |          |                      |                 |    |                |    |    |  | 56.64    | Must make            |
| MA282500-<br>0230   | 70F     | 4,174   | 199     |                        |     |                                         |  |   |  |  |     |   | 1                |    |          | Þ        | $\overline{\langle}$ |                 |    |                |    |    |  | 75.48    | Standardized<br>Work |
| MA162500-<br>19206N | 70F     | 3,400   | 162     |                        |     |                                         |  |   |  |  |     |   |                  |    |          |          |                      | $\left[\right]$ |    | *****          |    |    |  | 90.82    |                      |
| MA282500-<br>1230   | 70F     | 3,025   | 96      |                        |     |                                         |  |   |  |  |     |   |                  |    |          |          |                      |                 |    | ٢              |    |    |  | 99.91    | At least must        |
| MA282500-<br>1330   | 70F     | 20      | 1       |                        |     |                                         |  |   |  |  |     |   |                  |    |          |          |                      |                 |    |                | •  |    |  | 100      | time                 |
|                     |         |         |         |                        |     | 000000000000000000000000000000000000000 |  |   |  |  |     |   |                  |    |          |          |                      |                 |    |                |    |    |  |          |                      |
|                     |         |         |         |                        |     | 000000000000000000000000000000000000000 |  |   |  |  |     |   |                  |    |          |          |                      |                 |    |                |    |    |  |          |                      |

This PQ Chart shows distribution of product volume / day & their percentage.

Our target is to make time study for all model in the respective production line.

Commonly use is to make time study for model that contributes between 0% ~ 90% in line volume.

This to make initial standardize work for the line. For the balance 10%, we should have at least their total net time for reference. Once the analysis completed, best we make time study for all model for overall standardization.

# Thank You I



## ...to be continue