Basic Time Study

AICE PROGRAM - MALAYSIA AUTOMOTIVE INSTITUTE

Topics Outline

- Overview of standardized work
- Introduction to standardized work
- Objective of standardized work
- Elements of standardized work
- Takt time
- Cycle time
- Standard time
- Time Study on Continuous Observation

Manufacturing System

STABLE PRODUCTION

Overview of Standardized Work

Introduction to Standardized Work

Standardized work is the foundation for consistent and stable quality.

This consistency and stability is the first step towards Continuous Improvement (Kaizen)

Introduction to Standardized Work

Essence of Quality

Introduction to Standardized Work

Why Standardized Work?

....to maintain the safety at work place.
....to guarantees quality for the customer.
....to achieve better production performance.
....to create efficient production sequence with less waste

The system which can be easily understood
... the most efficient combination of person, machine, and material.

Introduction to Standardized Work

Case : Rusty Wallace's NASCAR Racing Team

- NASCAR racing became very popular in the 1990s with huge sponsorship and prize money
- High performance pit crews are a key element of a successful race team
- Pit crew members can earn $\$ 100,000$ per year - for changing tires!
- Each position has very specific work standards
- Pit crews are highly organized and go though rigorous physical training
- Pit stops are videotaped to look for improvements

Introduction to Standardized Work

1
Wallace＇s car pulls into the pit；the crew rushes to the right side of the car to begin service．

The second can of gas is being emptied；driver＇s side tires are being changed．

9．7sec．

Right side is jacked up，tire starts to come off；gas man is emptying his first can．
3．isec．

Service is complete．The jackman drops the car， which is the signal to the Wallace driver to exit the pit． $15,4 \sec$ ．

A good pit stop will take about 16 seconds．

FTC日 ดCFT JMU RTC日 এcRT 日GM\＃1

Action shifts to driver＇s side of the car；，gas man carries second can of gas in．
8.9 sec ．

Movement of the pit crew members who go over the wall．．．
$\mathrm{JM}=$ Jackman
FTC＝Front tire carrier
CFT＝Changer front tire
RTC＝Rear tire carrier
CRT＝Changer rear tire
GM\＃1＝Gas man \＃1
GM\＃2＝Gas man \＃2

Introduction to Standardized Work

Objective of Standardized Work

Performing standardized work allow clear and visible 'standard' operation. Deviation from standardized work indicates an abnormality, which is then an opportunity for improvement.

> The system enable everyone to find problems.

Standardized Work vs.
Work Standards???

Introduction to Standardized Work

Reduce variation in the process

People using different processes and get different result

Standardized
Work

People using standardized processes and get defined result

Introduction to Standardized Work

TIME
K = Kaizen
S = Standardized Work
Standardized Sustain Result

Elements of Standardized Work

Takt Time

Work Sequence

Standardized Work in Process (SWIP)

Takt Time

Definition

- From the German word Taktzeit (clock cycle), takt refers to the measure, meter or beat of movement.
- For the Lean enterprise, takt time is the pace at which items need to be produced in order to satisfy customer demand. It is the heartbeat of the market and the drumbeat of production.

$$
\text { Takt Time }=\frac{\text { Available Time (Total work time available) }}{\text { Daily Demand (Units required) }}
$$

Takt Time vs Cycle Time

Takt Time

Cycle Time
The heartbeat of the process and the voice of the customer
The time interval at which a finished product MUST come off the line to meet the customer's needs

Remark:

- Takt time (TT) and Cycle time (CT) are NOT the same.
\checkmark TT is driven by the customer; CT by the process.
- CT is not the same as Processing Time. For example, we might have multiple parts processed simultaneously - e.g. painting process : Each enters and exits the process every "x" seconds while the Processing Time for each part is longer.

Takt Time

Example 1:

Time Available (per shift)
510 min ($8.5 \mathrm{hr} \times 60 \mathrm{~min} / \mathrm{hr}$)

- 30 min (Lunch)
- 20 min (2-10 min breaks)
- 15 min (Ergonomic stretch)
- $15 \mathrm{~min}(5 \mathrm{~S})$
$430 \mathrm{~min} / \mathrm{day}$

Customer Demand 160 trucks/week
= 32 trucks/day
$430 \mathrm{~min} /$ day
$=13.4 \mathrm{~min} /$ truck
32 trucks/day

Takt Time

Example 2:

- Work Unit 3000 (Two shift operation)
- Customer demand = 1504 / per day
- Available work time = 16 hours = $960 \mathrm{~min} /$ day
- Less 4 breaks per day @ 10 min. each = 40 min
- Total Available Time = 920 min

Solution
$\checkmark 920$ minutes $X 60$ seconds $=55,200$ seconds
\checkmark Takt Time $=55,200 \mathrm{sec} / 1504$ units $=36.7$ seconds
\checkmark We need to net 1 unit every 36.7 seconds

Time Studies

- Involves timing a sample of a worker's performance and using it to set a standard
- Requires trained and experienced observers
- Cannot be set before the work is performed

Questions

What if CT is greater than TT... is this an issue?
What if CT is less than TT?

Time Studies

1. Define the task to be studied
2. Divide the task into precise elements
3. Decide how many times to measure the task
4. Time and record element times and rating of performance
5. Compute average observed time

Time Studies

6. Determine performance rating and normal time

$$
\text { Normal time }=\left(\begin{array}{c}
\text { Average } \\
\text { observed } \\
\text { time }
\end{array}\right) \times\binom{\text { Performance }}{\text { rating factor }}
$$

7. Add the normal times for each element to develop the total normal time for the task
8. Compute the standard time

Standard time $=\frac{\text { Total normal time }}{1-\text { Allowance factor }}$

Rest Allowances

- Personal time allowance
- $4 \%-7 \%$ of total time for use of restroom, water fountain, etc.
- Delay allowance
- Based upon actual delays that occur
- Fatigue allowance
- Based on our knowledge of human energy expenditure

Rest Allowances

1. Constant allowance
(A) Personal allowance
(B) Basic fatigue allowance 4
2. Variable allowances:
(A) Standing allowance 2
(B) Abnormal position
(i) Awkward (bending) 2
(ii) Very awkward (lying, stretching)

Rest Allowances

(C) Use of force or muscular energy in lifting, pulling, pushing
Weight lifted (pounds)
20
3
40 9
60.. 17
(D) Bad light:
(i) Well below recommended.... 2
(ii) Quite inadequate................ 5

Rest Allowances

(E) Atmospheric conditions
(heat and humidity)
(F) Close attention:
(i) Fine or exacting................... 2
(ii) Very fine or very exacting...... 5
(G) Noise level:
(i) Intermittent—loud................. 2
(ii) Intermittent—very loud or high-pitched.

Rest Allowances

(H) Mental strain:
(i) Complex or wide span
of attention........................ 4
(ii) Very complex....................... 8
(I) Tediousness:
(i) Tedious............................. 2
(ii) Very tedious......................... 5

Time Study Example 1

Average observed time $=4.0$ minutes
Worker rating = 85\%
Allowance factor = 13\%

Normal time $=($ Average observed time) \mathbf{x} (Rating factor)

$$
\begin{aligned}
& =(4.0)(.85) \\
& =3.4 \text { minutes }
\end{aligned}
$$

Standard time $=\frac{\text { Normal time }}{1-\text { Allowance factor }}=\frac{3.4}{1-.13}=\frac{3.4}{.87}$
= 3.9 minutes

Time Study Example 2

Allowance factor = 15\%
Cycle Observed (in minutes)

Job Element
-
(A) Compose and type letter
(B) Type envelope address
(C) Stuff, stamp, seal, and sort envelopes

1. Delete unusual or nonrecurring observations (marked with *)
2. Compute average times for each element

Average time for $\mathrm{A}=(8+10+9+11) / 4=9.5$ minutes Average time for $B=(2+3+2+1+3) / 5=2.2$ minutes Average time for $C=(2+1+2+1) / 4=1.5$ minutes
3. Compute the normal time for each element

Normal time $=($ Average observed time) \times (Rating)
Normal time for $\mathrm{A}=(9.5)(1.2)=11.4$ minutes
Normal time for $B=(2.2)(1.05)=2.31$ minutes
Normal time for $C=(1.5)(1.10)=1.65$ minutes
4. Add the normal times to find the total normal time

Total normal time $=11.40+2.31+1.65=15.36$ minutes
5. Compute the standard time for the job

$$
\begin{aligned}
\text { Standard time } & =\frac{\text { Total normal time }}{1-\text { Allowance factor }} \\
& =\frac{15.36}{1-0.15}=18.07 \text { minutes }
\end{aligned}
$$

@uestion

The data in the following table represent time-study observations on a new operation with three work elements. On the basis of these observations, find the standard time for the process. Assume a 15% allowance factor.

	Performance	Observations (times in seconds)			
Element		1	2	3	4
1		90.3	91.5	92.4	90.2
2		30.5	32.3	29.6	31.1
3	105%	130.5	128.9	132.0	130.5

Time Study

Time Study Analysis

Time Analysis Classification

Elemental operation time analysis

Continuous observation

It's used to observe highly repetitive, relatively regular \& short duration motion (in line operation)

It's used to observe less repetitive but long duration motion (set-up, off line operation \& etc)

It's used to observe highly repetitive but short duration cycle operation. Generally VTR are used.

Taking Elemental Operation : Time Analysis Procedure.

1. Observation frequency.

- Between 10 ~ 20 times data sampling.
- If fluctuation of material, part dimension or time value are big, increase observation frequency

2. Observation position \& posture.

- Observer's position should provide a good view of operation.
- Observer's position must not interrupt associate movement.
- The observer posture should be in such way that the associate, stop watch \& observer's eye were align.

3. During observation, give a full attention to operator movement.
4. Abnormal operation.

- Part dropping, equipment faulty (short m/c down \& etc), NG occurrence, repair, talking \& etc should be consider abnormal. Circle the entered time data with explanatory notes.

5. Determine dividing line for elemental operation.

- It's more helpful to utilize signals such as light, buzzer \& etc.

6. Exclude intermission time \& synchronizing m / c time.

- If waiting knowing in advance, write down in elemental operation work column

7. Interval operation time such as container replacement, quality check, should be entered for every operation.

Taking Continuous Observation : Time Analysis Procedure.

1. Study current operation earlier.
2. Fill up Operation Analysis Chart.
3. Make enough copies of the chart.
4. Start analysis \& make sure :
a. Observation position \& posture.

- Stand in a position where overall operation can be seen well. (move if required)
- Stand in a position that didn't disturb associate operation.
b. While observation, give a full attention to the operation.
c. Divide the operation into unit operation which is one level higher than elemental operation.

Time Study : Exercise

Watch writing characters on the whiteboard operation and perform time analysis.

Points

1) Watch carefully the operation content and memorize it.
2) Divide motions (sort into element operations)
3) Enter the element operations in the analysis sheet.
4) Measure time with stopwatch, keeping the dividing point of motion in mind.
5) Start observation after you get used to operation.

Time Study Through VTR : Exercise

	Untion	Obserration Point	
ssing		Mrie momat yous stand y	
do		Tre monert yous stod पp	
		The momeat por reateded the ford	
	Paie a prece of nixrer	Pre momet yout tok a piece of chalk	
	irite cliacaiers on cie mard		
	Pit on the marrers cap	Thie monety pou replaced dralk.	
		Trie nomet pou reumed to the chair.	
	3it on the chair		
	Rest		

Preparation to Make Time Study

It's the best condition if we can take all part number time study. But due to some model are slow moving, it's very difficult for us to take all of it. At this stage, we used PQ Analysis Chart to determine which part number are more priority.

					Appro	oved	Checked	Written
Production Quantity Analysis Chart								
	[PQ Chart]			Department : LEGO Manufacturing				
	Month :			Line name: HVAC				
	Working Day :			Date:				
No.	Part no.	Product	Monthly units	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Needed } \\ \text { units per } \\ \text { day } \end{array} \\ \hline \end{array}$	Needed units per day			Accumul ation \%
1	MA446850-962DOR	D73A	5921					
2	MA446850-972DOR	D74A	4646					
3	MA446850-982DOR	D75A	4123					
4	MA446850-992DOR	D76A	3465					
5	MA446850-оз10OT	Myui	3006					
6	MA446850-03100T	Myvi	2122					
7	MA446850-02100T	Alza	1784					
8	MA446850-0220OT	Alza	1234					
9	MA446850-O131OT	Vios	947					
10	MA446850-O141OT	Vios	756					
11	MA446850-0441OT	Camry	648					
12	MA446850-0451OT	Camry	541					
13	MA446850-6580OP	Exora	446					
14	MA446850-6570OP	Exora	312					
15	MA446850-5580OP	BLM	254					
16	MA446850-5570OP	BLM	212					
17	MA446850-5580OP	Waja	178					
18	MA446850-5590OP	Waja	136					
19								
Total								

[^0]

Process Capacity Sheet		Approved by: R. Ouan		$\text { PartII } \quad 2$			Application N-01		Entered by: Woyne Xi Date May 08,2007 Line Macthien Shop /2			
		Part name Bsese Unit	Number of parts 1									
Step	Step name		Machine \#		BASICT		TOOL	TANGE	PROCESSING	Remarks		
						manual	AUTO	COMPLE	CHMNGE	TME	CAPACTY/SHIFT	
1	adt		C100	θ	32	38	500	2 min .	720 p			
2	Rough Grind		OR100	7	12	19	1,000	5 min.	1,440 p			
3	Fine Grind		GR200	7	30	37	200	5 min .	$724 p$			
4	Measure Dismeter		18100	8	4	12	-	-	$2,325 p$			
			Total	28								

Production Quantity Anallysis Chart

Production Quantity Analysis Chart

Part No.	Product type	Monthly units	Needed* units per day	Needed units per day 													Accumu lation \%
$\begin{gathered} \text { MA282500- } \\ 10706 \mathrm{~N} \end{gathered}$	70F	7,400	352				-										33.34
$\begin{gathered} \hline \text { MA162500- } \\ 3260 \end{gathered}$	70F	5,160	246														56.64
$\begin{array}{\|c\|} \hline \text { MA282500- } \\ 0230 \\ \hline \end{array}$	70F	4,174	199														75.48
$\begin{array}{\|c\|} \hline \text { MA162500- } \\ \text { 19206N } \end{array}$	70F	3,400	162														90.82
$\begin{array}{\|c\|} \hline \text { MA282500- } \\ 1230 \\ \hline \end{array}$	70F	3,025	96												0		99.91
$\begin{array}{\|c\|} \hline \text { MA282500- } \\ 1330 \\ \hline \end{array}$	70F	20	1												\bullet		100

Must make Standardized Work

At least must have total net time

This PQ Chart shows distribution of product volume / day \& their percentage.
Our target is to make time study for all model in the respective production line.
Commonly use is to make time study for model that contributes between $0 \% \sim 90 \%$ in line volume.
This to make initial standardize work for the line. For the balance 10%, we should have at least their total net time for reference. Once the analysis completed, best we make time study for all model for overall standardization.

...to be continue

[^0]: 1 - Fill in the column of Month, Working day, Department, Line Name and Date.

 2 - Sum all the monthly quantity

 3 - Convert to daily quantity (Monthly / working day)

 4 - Draw the horizontal bar graft base daily quantity

 5 - Calculate the percentage accumulation
 Each model / total x 100\% add to previous value)

